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Abstract. Fuel cost is of critical importance to the profitability of road transport operators.  In 

addition, the transport industry is a primary contributor towards harmful emissions.  Earlier stud-

ies identified fuel economy as an important contributor towards fuel cost and found that truck 

driver behaviour is an important determinant for this phenomenon.  We used a representative 

data set to extract regression and neural models for fuel economy and used these models to re-

move the impact of factors not controlled by the driver, allowing us to measure driver perfor-

mance more accurately.  All models extracted demonstrated significant out-of-sample predictive 

ability.  Neural models for fuel economy outperformed regression models.  We verified the sig-

nificance of compensating for factors not controlled by the driver by demonstrating large differ-

ences in driver fuel economy ranking before and after compensating for route inclination and 

payload.  

Keywords: Green Transport Corridors, Fuel economy, Truck Driver, Perfor-

mance Benchmarking, Generalized Regression Neural Network, Multilayer Per-

ceptron. 

1 Introduction 

Road freight transport is an essential element of the global economy.  This is specifi-
cally relevant in regions with limited availability of rail infrastructure [1]; for example, 
road transport is responsible for 76% of cargo movement in South Africa; this figure is 
even higher in other African countries [2].  The cost of transport in Africa is much 
higher as a fraction of the total cost of delivered goods - 18% compared to a global 
average of less than 10% [3]. Fuel cost is the single biggest contributor to the cost of 
road transport operations, representing approximately 25-50% of operating costs [4] [5] 
[6].  Fuel economy is therefore a critical element to be managed by road freight 
transport operators to ensure continued profitability in a very competitive industry.   

The contribution of the transport sector towards greenhouse gas emissions in the 
US has been widely researched and is estimated at around 29% of all emissions caused 
by human activities [7]. As of 2010 the global transportation sector accounts for 14.3% 
of total GHG emission [8]. The transition to clean energy will be challenging for long 
haul freight trucks, due to the large distances covered by these vehicles. Heavy-duty 
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vehicle GHG EPA regulations are projected to reduce CO2 emissions by about 270 mil-
lion metric tons over the life of vehicles built under the EPA program, saving about 530 
million barrels of oil [8].   

Before proceeding with the main topic of this paper, namely the development of a 
model to accurately measure the contribution of driving behaviour to truck fuel econ-
omy, we will provide some background on the broader topic of Green Transport Corri-
dors. 

2 Green transport corridors 

Green Transport Corridors (GTC) has been coined by the European Union as being 

“sustainable logistics solutions for cargo transportation with a shared pool of resources 

aiming for multimodal trans-shipment routes with a concentration of freight traffic be-

tween significant hubs” [9]. After the revision of the EU Transport White paper in 2006, 

the concept of green corridors was introduced as an initiative of the European Commis-

sion, in the Freight Transport Logistics Action Plan [13]. Important stakeholders of 

green transport corridors are logistics hubs comprising ports and logistic centres, lo-

gistic forwarders as well as political institutions on several levels [12].  

The relevance of Green Transport Corridors stems from the fact that environmental 

pollution caused by international trade is becoming more severe with the expansion of 

global trade and continuous economic growth.  According to the “Pollution Haven” 

hypothesis, the development of trade liberalization in different countries will cause de-

veloped countries to lose competitiveness in polluting industries due to strict environ-

mental control. In contrast, developing countries will occupy a larger market share in 

these industries due to the reduction of environmental control [10].  When environmen-

tal regulation is more stringent, international trade can thus improve the welfare of the 

whole society and eliminate the negative impact on the environment 

Different aspects of green transportation have been studied in order to design sus-

tainable and environmentally friendly multi-modal transport solutions. The green 

transport corridor concept is aimed at the development and implementation of inte-

grated and sustainable transport solutions, based on trans-shipment routes with concen-

tration of freight traffic over long distances between major hubs, and characterised by 

reduced environmental and climate impact. Common topics recognised by all green 

corridor initiatives include co-modality, which enables the choice of environmentally 

friendly transport along the transport route, as reduced emissions are one of the obvious 

objectives of a greener transportation [11].   

When discussing the impact of transport infrastructure on the environment, existing 

research mainly focus on a single mode of transport and pays little attention to multi-

modal transport mode composed of multiple traffic tools. Multimodal transportation 

may fully use the benefits of diverse traffic technologies to create a transportation sys-

tem that is low on energy, low on pollution and high on efficiency. Important properties 

of green corridors are trans-nationality, multi-modality, public – private partnerships 

and multi – level stakeholder structures requiring new governance models to safeguard 

efficient management, sustainable corridor development and strong alignment of 
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transport policies at various administrative levels [12].  The implications for Africa of 

these factors impacting green transport corridors can be summarised as follows: 
• Trans-nationality: Most African transport corridors are inherently multi- or 

trans-national in nature, as they link land-locked countries and regions to re-
gional ports. Examples include the Djibouti-Addis Ababa corridor linking Ethi-
opia to the port of Djibouti, the Northern Corridor linking Uganda and Rwanda 
to the port of Mombasa, the Dar es Salaam corridor linking Burundi, Zambia 
and the Eastern DRC to the port of Dar es Salaam, and Beira corridor linking 
Zimbabwe and Malawi to the port of Beira.  Measures that are implemented to 
make these corridors greener will need the support of all countries served by the 
corridors.  This implies a need for the harmonization of regulations between all 
countries linked to the corridor, not only regarding matters like load control but 
also regarding environmental regulations. 

• Multi-modality: To optimize the environmental friendliness of transport corri-
dors, it is necessary to choose the transport mode that is the most environmen-
tally friendly for the type of cargo and the distances over which it is transported.  
For the maritime leg it requires comparative analysis between the different ship-
ping lines serving the same routes, to allow clients to select service providers 
not only based on cost or transport time but also based on environmental criteria.  
For the land-based leg it is essential to expand the role of rail vs road, as it is 
widely known that rail is a more environmentally friendly mode of transport 
compared to road for bulk cargo like coal. Due to the demise of most rail oper-
ations on the African continents, around 80% of cargo is however transported 
by road; this not only reduces the lifetime of the road infrastructure but also add 
to the carbon footprint of the African transport industry. 

• Public – private partnerships: Due to legacy reasons many elements of transport 
corridors on the African continent are operated by state-owned monopolies.  
This is associated by low levels of productivity and lack of options from which 
cargo owners from the private sector can choose.  An approach that can find a 
balance between public and private sector involvement is that of public – private 
partnerships, which have already found a foothold on the African continent in 
the form of concessions given to the private sector to operate ports, rail and road 
networks.  A new criterion for the formation of such partnerships should be the 
environmental criteria to be satisfied by the respective operations, measured 
against international standards aimed at the reduction of greenhouse gas emis-
sions. 

• Multi – level stakeholder structures: Transport corridors involve stakeholders at 
multiple levels, from local operators serving short term routes and markets, to 
multi-national operators, individual governments and regional bodies like 
SADC, EAC and COMESA. The objectives of green transport corridors can 
only be achieved if environmental objectives are integrated into the long-term 
goals and strategies of these bodies, and if the deployment of green transport 
concepts can benefit from international donor funding.  While strategic level 
decisions about environmental objectives can be made at regional level, practi-
cal differences will only be observed once the consequences have trickled down 
to grass-roots level, by incentivising large and small role players to operate in 
more environmentally friendly manners.  Regional and governmental structures 
must therefore actively liaise with industry associations at local level to promote 
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environmental objectives and to explain new criteria that are enforced, as well 
as the associated incentives awarded to compliant operators. 

• New governance models: The issue of good governance has always presented 
challenges on the African continent.  Objectives and strategies that on the sur-
face appear to require substantial costs without immediate benefits may be dif-
ficult to promote and enforce if there is no transparency in the way that compli-
ance is measured, and credits are awarded.  Enforcement of environmental com-
pliance will require a combined carrot-and-stick approach, where practical com-
pliance levels are accurately measured through the collection of field data, 
where non-compliant operators are held accountable, e.g. by withholding of per-
mit to operate cross-border, and where there is a clear link between the level of 
compliance and the incentives that are awarded, both to private operators and 
public sector officials. 

Recent studies considered the impact of the heterogeneity of factor endowments in 

different cities on green development and found that operating multi-modal corridors 

between economic regions can improve regional green economic efficiency (GEE). The 

impact mechanism test showed that promoting regional innovation and reducing urban 

energy intensity are two effective ways for multi-modal corridors to improve regional 

GEE [14]. 

Against this background the further sections of this paper will study the fuel effi-

ciency of long-haul trucking operations as an important element of green transport cor-

ridors.  More specifically we will illustrate how the environmental and economic im-

pact of truck driver behaviour can be accurately measured, aimed at incentivising fuel 

efficient driving behaviour. 

3 Modelling truck and driver fuel economy 

Driver proficiency, payload and route inclinations are known to be the primary fac-
tors that influence truck fuel consumption [15] [16] [17]. Engine characteristics and 
driving style have also been found to play a major role [18] [19].  Another study applied 
a  Big Data approach to large vehicle fleets driving on flat roads and at constant speeds 
[20], while further research investigated the use of telematics solutions to improve truck 
fuel consumption [21]. 

Various historical studies applied neural networks to model the fuel economy of 
trucks with the aim to find the most accurate for fuel economy in terms of the input 
factors mentioned above [22] [23] [24] [25].  A critical aspect that has been overlooked 
is to accurately quantify the contribution of the driver.  The behavior of the driver is the 
only factor that can be readily influenced to reduce emissions and fuel costs without 
negatively impacting the economic function fulfilled by transport.  This will however 
only be possible if the impact of factors like route inclinations and payload are removed 
before assessing the performance of the driver.   

To achieve the objective of accurate driver assessment, we will re-use the linear and 
nonlinear regression and neural techniques that model fuel economy for long haul 
freight trucks in terms of route inclination, payload and driver identity [26].  We will 
use these models to evaluate driver fuel economy performance after compensating for 
factors not controlled by the driver [26].     
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The focus of this work is to investigate the hypothesis that the presence of factors 
not under the control of the truck driver, like route inclinations and payload differences, 
significantly influence the performance outcomes for truck drivers if not properly com-
pensated for.  To test this hypothesis, we use regression and neural models that quantify 
the impact on fuel economy of factors not controlled by drivers, to remove the impact 
of such factors in order to arrive at a residual fuel economy that is mainly determined 
by driver behavior.  This approach should produce more reliable driver performance 
measures than simple averages of performance over all driver trips and should therefore 
enable objective assessment of driver performance.   

The rest of the paper is structured as follows: the collection of a representative set of 

fuel consumption data and the different routes that were covered by the available data 

set is described in section 4.  Statistical measures of fuel economy for the population as 

well as per route and driver are extracted in section 5, to provide evidence of the need 

for a driver performance model.  The extraction of empirical models that will allow the 

isolation of the impact of the driver on fuel consumption is covered in section 6Error! 

Reference source not found.. Section 7 estimates the impact of model compensation 

on driver performance measurement. In section 8 we conclude and make recommenda-

tions for future research work. 

4 Collection of fuel consumption and input factor data 

In order to develop reliable models it is necessary to generate representative fuel usage 
statistics on routes that include widely ranging inclinations.  For this purpose, we col-
lected data over a period of two calendar years from a fleet of 468 vehicles that cover 
most of the major routes in Southern Africa, as displayed in Figure 1 below.       

 

Figure 1 GPS crumb trail data of a typical truck from the data set  
 

We identified categorical variables that have been proven to influence fuel economy 
(including driver ID and route) and categorized the data according to these variables.  
The collected data included GPS location, time and date and the total amount of fuel 
used by the engine for the duration of a trip (defined as from switch on to switch off).  
We filtered out all trips with a trip distance of shorter than 100 km as very short trips 
have much lower fuel economy (measured in km/l) compared to the long haul trips that 
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is the focus of this study.  The dataset furthermore included the payload per trip. 

To identify occurrences of fuel theft we calculated the discrepancies between the 
amounts dispensed after each trip compared to the amounts of consumed fuel according 
to the on-board computer of the trucks for the same calendar period.  As trucks were 
not always fully refuelled, it resulted in some invalid comparisons; we therefore re-
moved those observations where significant negative discrepancy values were ob-
tained.   

https://www.sciencedirect.com/science/article/pii/S2210539522001298  

https://journals.sagepub.com/doi/10.3141/2478-13?icid=int.sj-abstract.similar-arti-
cles.3  

5 Extracting statistics for route and driver fuel economy 

The statistics for the variables related to fuel economy measured across 7,332 
observations were described in detail in earlier work [26]; we will only repeat the most 
important results in this paper.  The available data included observations for 21 different 
routes, most of which were frequently driven over the relevant period by a set of 331 
drivers.   In order to investigate the impact of route characteristics and driver behaviour, 
the available data set was categorized per route.  Figure 2 displays the number of trips 
available per route as well as the average fuel economy per route, sorted from highest 
to lowest.  It can be seen that the average fuel economy per route varies by almost a 
factor of two from the least to the most fuel efficient. Figure 3 displays the histogram 
of average fuel economy per driver across all routes.  For drivers the spread of averages 
is even wider than for routes; this may however partly be because of route inclination 
and payload variations. 

 

 

https://www.sciencedirect.com/science/article/pii/S2210539522001298
https://journals.sagepub.com/doi/10.3141/2478-13?icid=int.sj-abstract.similar-articles.3
https://journals.sagepub.com/doi/10.3141/2478-13?icid=int.sj-abstract.similar-articles.3
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Figure 2  Number of trips and average fuel economy per route [26] 
 

 

Figure 3  Histogram of average fuel economy per driver for all routes [26] 

As could be expected, the variation in performance between drivers within a specific 

route is not quite as big as across all routes, as can be seen by studying the histograms 

of driver average fuel economy for a few individual routes in Figure 4.  By first remov-

ing the impact of the route, we can quantify the potential for fuel economy improve-

ment, should all drivers perform at the same level.  From these histograms of average 

driver performance on the same routes, it can already be seen that, should all drivers 

perform at the same level as the best drivers, fuel usage would be reduced by more than 

30%. 

 

 

 
 

Figure 4  Histograms of average fuel economy per driver for individual routes [26] 
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6 Extracting empirical fuel economy models 

In a previous article [26] we described the extraction of linear fuel economy regression 
models, nonlinear regression models as well as various neural network models.  Thia 
included a generalized regression neural network, which is a type of radial basis 
function network, as well as multi-layer perceptrons.  We extracted models using all 
four modeling techniques (linear regression, nonlinear regression, GRNN and MLP 
NN) from the earliest 70% of all observations, and predicted fuel economy for the 
remaining 30% of observations.   

We first extracted models using driver, route and payload factors as inputs to allow 
comparison of our results with results from previous research.  We selected input 
factors by ranking potential inputs based on absolute value of linear correlations 
between inputs and fuel economy, and only included input factors with a correlation 
coefficient of at least 0.1 with the model target.  Once a ranked input factor has been 
selected, we only considered additional factors that had a correlation with already 
selected factors of less than 0.4, as the use of several higly correlated inputs results in 
unstable model parameters.  The list of model parameters selected on this basis included 
Elevation Gain, Max RPM, Payload and Max Speed.  Elevation Lost and some other 
factors were not selected based on their high correlations with Elevation Gain, that was 
selected first as it had the highest absolute correlation with fuel economy. 

The scatterplots of Target vs Output for the regression and neural models 
respectively, as displayed in Figure 5 and Figure 6, show that the model fits for the test 
sets are very similar to that for the training sets.  This indicates that the models have 
good generalization capability.  The neural models provide a superior fit of output to 
target compared to the regression models, while the GR neural network seem to be 
slightly superior to the MLP network.  We will confirm these observations using cor-
relation analysis.   

 

Figure 5 Scatterplots for linear and nonlinear regression Targets and Outputs [26] 
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Figure 6 Scatterplots for GRNN and MLP neural network Targets and Outputs [26] 
 

We calculated the correlations between model outputs and target variables for both 
the training and test sets, as displayed in Table 1 and Table 2 below, to assess model 
accuracy.  As expected, the models that include driver, route and payload inputs have 
the biggest correlations between output and target.  The observed relationships between 
fuel economy and the respective explanatory variables are strong and consistent, as 
most of the correlation obtained in the training set is still present in the test set.  The 
nonlinear regression models perform slightly superior to the linear regression models, 
while the neural models outperform the regression models, both for the general, the 
route & payload and the driver models.  The driver behavioral model that uses Max 
RPM, Max Brake and Max Speed as inputs, slightly outperforms the driver ID model 
that uses driver identity as input.   

Table 1 Correlation coefficients between fuel economy model outputs and targets for 
the training set [26] 

 

Inputs LinRegr NonLinR GRNN MLPNN 
All Var 0,695 0,721 0,856 0,800 
Route 0,627 0,660 0,740 0,735 

Payload 0,174 0,184 0,221 0,257 
Route&Pay-

load 
0,671 0,705 0,814 0,783 

DriverBeh 0,381 0,381 0,392 0,400 
DriverID 0,357 - 0,300 0,327 

Table 2 Correlation coefficients between fuel economy model outputs and targets for 
the test set [26] 

Inputs LinRegr NonLinRe GRNN MLPNN 

All Var 0,592 0,655 0,763 0,741 
Route 0,607 0,636 0,710 0,706 

Payload 0,180 0,202 0,240 0,282 
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Route&Pay-
load 

0,640 0,678 0,768 0,744 
DriverBeh 0,139 0,159 0,315 0,341 
DriverID 0,121 - 0,127 0,148 

7 Estimating model compensation impact on driver 

performance measurements 

To measure driver performance more consistently we have to compensate for those 

factors that the driver cannot control. For this reason, we calculated a compensated fuel 

economy figure for each trip by subtracting the route and payload fuel economy model 

output from the original fuel economy.  We then added the population average fuel 

economy to this residual to obtain a fuel economy figure that is mostly attributed to 

driver behavior: 

𝐷𝑟𝑖𝑣𝑒𝑟 𝑓𝑢𝑒𝑙 𝑒𝑐𝑜𝑛𝑜𝑚𝑦 = 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑓𝑢𝑒𝑙 𝑒𝑐𝑜𝑛𝑜𝑚𝑦 − 

𝑅𝑜𝑢𝑡𝑒&𝐶𝑎𝑟𝑔𝑜 𝑚𝑜𝑑𝑒𝑙 𝑜𝑢𝑡𝑝𝑢𝑡 +  𝑃𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 (2) 

Table 3 and Table 4 displays correlations obtained between outputs and targets for the 
various models. As before we observe that neural models slightly outperform linear 
regression models, and that for neural models a significant fraction of the correlation 
between output and target is retained in the test set. 

Table 3 Training set correlation coefficients between outputs and targets for models 
trained on the route & payload residual fuel economy [26] 

 

Inputs LinRegr NonLinR GRNN MLPNN 
DriverBeh 0,263 0,262 0,271 0,277 

DriverID 0,435 0,067 0,368 0,414 

Table 4 Test set correlation coefficients between outputs and targets for models trained 
on the route & payload residual fuel economy [26] 

 

Inputs LinRegr NonLinR GRNN MLPNN 

DriverBeh 0,024 0,044 0,173 0,200 

DriverID 0,134 0,033 0,112 0,131 

 

To verify if variations in performance for the same driver are reduced after com-

pensating for the impact of route and payload, we calculated the standard deviation of 

uncompensated driver fuel economy averages over all drivers, and obtained a figure of 

0.192 km/l.  The compensated driver fuel economy in equation 2 above was used to 

calculate compensated driver averages.  The standard deviation of compensated driver 

averages was then calculated as 0.158 km/l; as expected this is indeed lower than the 

figure before compensation.   
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In Figure 7 we compare uncompensated versus route and cargo compensated fuel 

economy histograms for a sample of drivers.  The change in distribution is clearly vis-

ible; in cases where the average did not change much, as for driver 923, the spread 

became narrower as expected, due to the removal of the impact of varying route incli-

nations and payloads. 

To verify the impact of compensating for route and payload we calculate correlations 

between average driver fuel economy performance before and after compensation.  Ta-

ble 5 indicates that driver performance before and after route and payload compensation 

is negatively correlated.  The fact that this is almost equally strong for the training and 

test sets provides evidence that it is not as a result of model overfitting.  We furthermore 

observe that when also removing the impact of driver ID the remaining correlation for 

the training set is almost zero, as the remaining model error will now have little resem-

blance to the original fuel economy.  A small positive correlation remains for the test 

set as the models could not capture all variations present in the data; this is also to be 

expected as not all factors impacting fuel economy are present in the model (e.g. wind 

speed and traffic conditions). 

 

 

Figure 7 Comparison of uncompensated and route and cargo compensated fuel econ-
omy histograms for different drivers [26] 

Table 5 Correlations between compensated and uncompensated driver fuel economy 
performance [26] 

Variable Train Test 

Route&Cargo Compensated -0,598 -0,554 

Driver,Route&Cargo Compensated 0,007 0,240 
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To quantify the degree to which model compensation influences driver performance 

measures we calculated each driver’s ranking compared to other drivers, firstly based 

on uncompensated and secondly based on compensated performance averages.  For 

each driver the difference in ranking position was determined before and after model 

compensation; we normalized this change in ranking by division through the total num-

ber of drivers.  We then calculated the average absolute change in ranking differences 

over all drivers to obtain an overall figure of the degree to which ranking was impacted 

by performance compensation, as indicated in equation 3 below: 

Ave Relative Ranking Change =  ∑ Abs(Ranking Change)k
N 

⁄N
k=1  (3) 

where N is the total number of drivers.  This figure will be zero for no ranking 

changes and 0.5 for random changes to all driver rankings.  To verify the consistency 

in driver performance over time, we first calculated the relative change in ranking be-

tween the training and test sets for both the uncompensated and compensated fuel econ-

omies and obtained a relative ranking change of 0.27.  This indicates that performance 

does change over time, but that it is not entirely random, with some level of consistency.  

We then proceeded to compare the ranking of driver performances between the case 

with no compensation and the case after model compensation.  Table 6 and Table 7 

displays the relative ranking changes for different compensation models for the training 

and test sets.  The fact that the change in driver ranking before and after compensation 

is bigger than the difference of 0.27 observed between the training and test sets, indi-

cates that, over and above changes in performance over time, the model-based compen-

sation results in a significant difference in driver ranking.   

Table 6 Average relative change in driver performance ranking before and after com-
pensation for the training set [26] 

 

Inputs LinRegr NonLinR GRNN MLPNN 

All Var 0,468 0,468 0,447 0,456 

Route 0,477 0,469 0,465 0,466 

Payload 0,493 0,489 0,495 0,494 

Route&Pay-
load 

0,479 0,471 0,472 0,473 

DriverBeh 0,460 0,459 0,482 0,458 

DriverID 0,343 0,494 0,500 0,411 

 
Table 7 Average relative change in driver performance ranking before and after com-

pensation for the test set [26] 
 

Inputs LinRegr NonLinR GRNN MLPNN 

All Var 0,471 0,468 0,462 0,462 

Route 0,483 0,472 0,471 0,467 

Payload 0,493 0,486 0,493 0,493 

Route&Pay-
load 

0,482 0,464 0,473 0,475 

DriverBeh 0,470 0,467 0,477 0,472 

DriverID 0,414 0,495 0,499 0,445 
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These scatterplots of driver rankings before and after compensation as displayed in 

Figure 8 confirmed these results.  The straight line in the middle of the graph may seem 

to indicate that a series of drivers have retained the same ranking before and after com-

pensation.  In fact, these are drivers with no trips in the test set and to whom we allo-

cated average performance; they therefore assumed sequential positions in the ranking 

list.   

We then calculated the fraction of drivers for whom performance relative to the pop-

ulation average changed from positive to negative or vice versa after compensation.  

The total fraction of changes should be 0.5 if performance before and after model com-

pensation is unrelated (e.g. random performance changes).  In Table 8 we observe that 

for route and cargo model compensations the fraction of drivers with reversed relative 

performance are the biggest.  For the driver models the fraction of changes approach 

0.5, because the residues from these models are largely unrelated to driver identity and 

would therefore appear to be random. 

We calculated the differences in average relative change in ranking between the mod-

els, to allow comparison of the impact of the different models on driver performance 

after correction.  As these differences are close to zero, displayed in Table 9, it provides 

evidence that all the models largely agree in terms of the required changes in driver 

ranking.  In those cases where a model was compared against itself a result of exactly 

zero was obtained.  Table 10 displays the results of a similar comparison between route 

models and payload models that used the same modelling technique.  As payload rep-

resents a smaller fraction of fuel economy changes compared to route inclination, it is 

less effective when used on its own.  The differences are therefore slightly larger than 

in the previous case. 
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Figure 8 Comparison between driver ranking before and after compensating for route 
and cargo [26] 

 
Table 8 Fraction of drivers with reverse in relative performance before and after com-

pensation [26] 

Inputs LinRegr NonLinR GRNN MLPNN 
All Var 0,565 0,565 0,529 0,511 
Route 0,577 0,565 0,544 0,532 

Payload 0,601 0,592 0,592 0,583 
Route&Pay-

load 
0,577 0,583 0,544 0,571 

DriverBeh 0,565 0,553 0,577 0,562 
DriverID 0,363 0,607 0,598 0,447 

 
Table 9 Comparing different route & payload models based on difference in driver 

performance ranking after compensation [26] 
 

Model Type LinRegr NonLinR GRNN MLPNN 

LinRegress 0,000 0,070 0,091 0,078 
NonLinRegr 0,070 0,000 0,109 0,095 

GRNN 0,091 0,109 0,000 0,059 
MLPNN 0,078 0,095 0,059 0,000 

 
Table 10 Comparison between route and payload models based on difference in driver 

performance ranking after compensation [26] 
 

LinRegress 0,082 

NonLinRegress 0,123 

GRNN 0,100 

MLPNN 0,121 

8 Conclusions and future work 

The objective of this paper was to determine the impact of truck drivers on truck fuel 
economy.  More specifically, we investigated the impact on driver performance ranking 
of compensation for factors not controlled by the driver.  We stated a hypothesis that 
factors beyond the control of a truck driver have a significant impact on methods to 
measure driver fuel economy performance. The results reported in this paper provides 
conclusive evidence that we can accept this hypothesis.  

Based on our analysis of fuel economy, we found that route inclination and payload 
explain a significant fraction of total observed fuel economy deviations.  We observed 
that compensating for route and payload reduced variations between average perfor-
mance levels of different drivers.  We furthermore found that there is more consistency 
between driver performance in the training and test sets after compensating for route 
and payload than before.  We also found that driver fuel economy performance, meas-
ured before and after compensating for route and payload, are negatively correlated.  In 
line with this finding, we observed large changes in driver performance ranking after 
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compensation.  Lastly we found that, for the majority of drivers, the fuel economy per-
formance relative to the population average changes in sign after compensating for 
route and payload.  

The above findings provide convincing evidence that the default measure currently 
used for driver fuel economy performance, namely the observed average performance 
over all completed trips, is not reliable.  We therefore propose a new performance meas-
ure, based on the residual of the model that predicts fuel economy in terms of route 
inclinations and payload.  By adding the population average for fuel economy to this 
residual one can obtain a realistic fuel economy performance assessment for each 
driver. 

Based on feedback from road transport operators and operators of truck parking fa-
cilities, we believe that fuel theft activities are not only restricted to refuel depots, but 
also occur in locations like truck parks, where drivers receive bribes in exchange for 
allowing fuel to be siphoned from their trucks.  We can investigate the prevalence of 
this phenomenon by monitoring average fuel tank levels before and after trucks visited 
such locations, where no formal refuel facilities are located.  Momentary samples of 
fuel tank levels tend to be an unreliable indication of the volume of fuel currently in the 
tank, due to movements in the fuel surface while driving and the high thermal expansion 
coefficient of diesel.  By filtering out short term fluctuations and linking such measure-
ments to temperature readings, it should however be possible to provide indicators of 
estimated changes in fuel tank volumes before and after suspicious events while the 
truck is in transit. 

Future work will involve the inclusion of additional input factors not related to driver 
behavior, like wind speed and traffic conditions, as factors to be compensated for in the 
fuel economy model.  We will also consider the use of more sophisticated neural net-
work techniques, e.g. using recurrent neural networks to apply temporal filtering to real 
time measurements of fuel tank levels.  We furthermore plan to extend the study to 
include vehicle fleets from other parts of Africa, including the rest of SADC region and 
East Africa. 
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